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Abstract: In this study, it was found that an ancient bronze sword had special microstructures, i.e., a
tin (Sn)-rich layer (Sn: 38.51 wt.%), that was around 0.1–0.3 mm in thickness in the bronze substrate
(Sn: 18.57 wt.%). This sword was unearthed from the same Chu tombs of the “Sword of Gou Jian”, and
dated back to the late Spring and Autumn Period (496 BC–464 BC). The experimental and theoretical
analyses revealed that (1) the Sn-rich layer exhibited higher microhardness (around 650 HV) than the
sword body (around 300 HV); (2) the Sn-rich layer showed a brittle fracture due to the formation of a
large amount of α + δ eutectoid, while the sword body was of good toughness due to a large amount
of α-Cu solid solution phase; and (3) theoretical calculations of Sn diffusion in the Cu substrate
indicated that this Sn-rich layer could have been formed within several hours or several days if the
temperature was above 600 ◦C. Therefore, this sword was proposed to be a novel kind of composite
bronze sword, and the possible manufacturing technique was a surface treatment called “dip or
wipe tinning” or tin amalgam, which was widely used in the Bronze Age. Technically, this process
possesses more advantages than the well-known two-times casting for making the “double-colour”
or bi-metallic composite bronze sword. This research showed that the materials processing level was
beyond our expectations for ancient China 2500 years ago.

Keywords: composite bronze sword; copper-tin alloy; element diffusion; Fick’s law; ancient bronzes

1. Introduction

The ancient Chinese people worshipped the bronze and iron swords, where they
reached a point of magic and myth, regarding the swords as “ancient holy items”. Because
they were easy to carry, elegant to wear and quick to use, bronze swords were considered a
status symbol and an honour for kings, emperors, scholars, chivalrous experts, merchants,
as well as common people during ancient dynasties. For example, Confucius claimed
himself to be a knight, not a scholar, and carried a sword when he went out. The most
famous ancient bronze sword is called the “Sword of Gou Jian”. It was unearthed from the
No. 1 Chu tomb at Wangshan village in Jiangling city of Hubei province, China, in 1965. The
sword body was decorated with diamond-shaped dark stripes, and there are eight concave
Chinese Niao-Zhuan characters that means “King Gou Jian of Yue, Self-used Sword” with
gilding in two lines. This sword was dated back to the late Spring and Autumn Period
(496 BC–464 BC).

However, due to its simple shape and size, the process of making a bronze sword was
simple when compared with other ancient bronze wares, let alone the “Chimes of Marquis
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Yi of Zeng” and the very complicated “Plate (Zunpan) of Marquis Yi of Zeng”. In other
words, the “Sword of Gou Jian” became famous mainly because it was a “Sword of the
King”, as well as idioms and legends of King Gou Jian’s “stoop to conquer”.

As is already known, ancient bronze weapons were cast from a Cu-Sn alloy. In general,
a high Sn content corresponds to high hardness, but it is brittle and, thus, easy to break,
while a low Sn content corresponds to high toughness, but it is soft and not sharp. In the
Bronze Age and before the steel weaponry appeared, making bronze weaponry with both
hardness and toughness was a big challenge.

Studies and archeological excavations indicated that the “double-colour” or bi-metallic
composite bronze sword was a significant innovation of the two vassal states, namely, Wu
and Yue, during the Spring and Autumn and the Warring States Periods [1–5]. The principle
was to adopt a kind of two-times casting, i.e., first using bronze with a low Sn content
(red and yellow colour) to cast the middle part of the sword ridge to obtain toughness and
flexibility, and then using bronze with a high Sn content (yellow and white color) to mould
the blade for high hardness and strength, as shown in Figure 1. Consequently, a bronze
sword with good performance regarding both hardness and toughness was obtained.
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Figure 1. Sketch diagram of the two-times casting for making the bi-metallic bronze sword.

In our previous work [6], two bi-metallic bronze Ges (dagger-axes), which belonged to
a halberd manufactured during the Warring States Period (475 BC–221 BC), were discovered
and studied. However, different from the composite bronze sword, the ridges of the Ges
were made of pure Cu.

In this study, a special kind of ancient bronze sword was found that had a tin (Sn)-rich
layer that was around 0.1–0.3 mm in thickness on the surface of the bronze substrate, and
the Sn-rich layer had much higher hardness than the sword body. Regarding the museum
record, it was unearthed from the same Chu tombs of the “Sword of Gou Jian” in 1965
and dated back to the late Spring and Autumn Period (496 BC–464 BC). Obviously, this
sword exhibited a similar design philosophy, with the well-recognised bi-metallic bronze
sword, i.e., the low-Sn bronze for the mid-ridge to provide good toughness and flexibility
and the high-Sn bronze for the blade to provide high strength and hardness. Obviously,
the technique for manufacturing this novel kind of composited bronze sword was more
advanced than the two-times casting for the regular bi-metallic bronze sword. However,
how was this surface treatment made? What were the processing conditions, such as
temperature, length of time used, and special additive agent? This work analysed and
discussed these issues from a materials science perspective, i.e., element diffusion theory,
expecting to reveal a novel approach and machining process used for making bronze
swords in ancient China more than 2500 years ago.

2. Materials and Experimental Methods

Figure 2 shows a remnant of the bronze sword. It was from the Jingzhou museum
of Hubei Province, China. According to the record, it was unearthed from the same Chu
tombs of the “Sword of Gou Jian” in 1965; that is to say, it was made during the late Spring
and Autumn Period (496 BC–464 BC). However, because it is a broken sword and was
not studied previously, the museum could not provide more archeological information.
Macroscopically speaking, the late Spring and Autumn Period was an age of high-level
bronze technology in the Wu, Yue and Chu states of ancient China, especially regarding
swords and other weaponry due to frequent wars.
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Figure 2. Images of the remnant of the bronze sword.

The metallographic cross-section sample was cut along the vertical direction of the
bronze sword fragment and then mechanically polished and etched according to regular
standard procedures, i.e., mounting, grounding, polishing and then etching by dipping
into alcoholic ferric nitrate solution. The etching solution was made of 2 g ferric nitrate
and 50 mL ethanol. The fractographic cross-section sample was directly broken at room
temperature or a low temperature, which involved cooling using liquid nitrogen.

The metallographic micrographs were observed by using an optical microscope (Cover-
18, Olympus, Tokyo, Japan). Microstructural observations and chemical composition
analysis in spot- and line-scan modes were carried out by using a scanning electron mi-
croscope (SEM, Sirion, FEI, The Netherlands) equipped with an energy-dispersive X-ray
spectrometer (EDS, Genesis 7000, EDAX Inc., Warrendale, PA, USA) operated at 15 kV. The
spot-scan mode with five spot measurements was used to quantitatively obtain the aver-
age composition values of the sword, while the line-scan mode was used to qualitatively
obtain the profiles of the Sn content variation along the cross-section from the sword’s edge
to the body.

The microhardness was measured using a Vickers microhardness tester (HXD-1000,
Shanghai Taiming Optical Instrument Co., LTD, Shanghai, China) with a load force of
1.961 N (200 g) and a force-holding time of 15 s.

3. Experimental Results

Through systematic characterisations involving microstructures, chemical composi-
tions and microhardness, this bronze sword exhibited the following specialties:

(1) From the appearance, there was no corrosion substance and there was a shiny black
surface with a very sharp blade after 2500 years. Initially, the sword colour might have
been silvery white or silvery yellow, and the current dark gray colour was the result of thin
oxidation or dirt covering that accrued during long-term burial.

(2) Scanning electron microscope (SEM) observations showed that there was a ho-
mogeneous layer with a special microstructure, which was obviously different from the
body of the sword, as shown in Figure 3. It exhibited the following notable features: (i) the
thickest layer, about 0.6 mm, was at the blade, and the ridge was in the range of 0.1–0.3 mm;
(ii) there was a clear interface between the layer and the substrate, which had a close
combination, though the interface exhibited a saw-toothed variation.
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Figure 3. Cross-section SEM morphologies of the sword: (a,b) low magnification; (c,d) high magnification.

(3) Figure 4 and Table 1 give the chemical compositions measured in line-scan and
spot-scan modes, respectively. Obviously, the Sn line-scan profiles qualitatively revealed a
higher Sn value in the Sn-rich layer than that in the sword body. The spot-scan quantitative
measurements indicated that the sword body was a pure Cu-Sn alloy with a lower Sn
content, while the surface layer (named as “Sn-rich layer”) contained not only higher Sn
content but also impurity elements, such as Fe, Si and P, which are discussed below.
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Table 1. Chemical compositions of the sword (wt.%).

Element Cu Sn Fe Si P

Sword body 81.43 18.57 — — —

Sn-Rich layer 53.42 38.51 6.06 1.27 0.75
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(4) Figure 5 shows the microstructures and morphologies of the sword cross-section
surface. The Sn-rich layer was composed of a large amount of α + δ eutectoid and a few fine
and dense α-Cu solid solutions in which few transcrystalline microcracks could be observed.
However, the sword body consisted of homogeneous tempered microstructures as an α-Cu
phase (bright), α + δ eutectoids (grey) and retained β-Cu phase (acicular structure), as
shown in Figure 6d, while the cast microstructures, such as dendrites and columnar grains,
were not observed.
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(5) Figure 6 shows the fractographies of the sword cross-section surface. The sword
body showed a good toughness with many tearing edges, while the Sn-rich layer exhibited
a typical brittle fracture. In addition, the features of cleavage fracture, such as transgranular
or intercrystallite structures, and even the “rock sugar fast” morphology of intergranular
fracture, could be observed through SEM at high magnification, as shown in Figure 6d.
These results revealed that the Sn-rich layer was of higher hardness and brittleness than
the body, which, in fact, also corresponded to their microstructures, as shown in Figure 5:
(i) For the sword body, the α-Cu solid solution with a face-centered cubic (FCC) crystal
contributed to the ductile fracture and formed the tearing edges, while the Sn-rich α + δ
eutectoid produced the brittle cleavage fracture. (ii) For the Sn-rich layer, the fine and
compact Sn-rich α + δ eutectoid would inevitably produce the cleavage brittleness fracture
because of the existence of the hard but brittle δ-Cu phase (Cu31Sn8). In general, the
δ-Cu phase not only contains about 32.6 wt.% Sn but is also a complex cubic structure.
These fracture morphologies also provided evidence that the Sn-rich layer was not a loose
corrosive layer.
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Figure 6. Cross-section fracture surface SEM morphologies of the sword: (a) low magnification;
(b) high magnification of the body; (c) portion of the Sn-rich layer; (d) high magnification of the
Sn-rich layer.

(6) Figure 7 illustrates the Vickers microhardness (HV) profile of the sword cross-
section surface. The highest hardness of the Sn-rich layer reached over 650 HV, while the
sword body was only around 300 HV. Obviously, this also demonstrated that the Sn-rich
layer was not a loose corrosive layer.
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From the above experimental results, it could be confirmed that this bronze sword
had undergone surface treatment, i.e., a surface modification (thermal hardening), and
not a surfacing coating. It also demonstrated that this bronze sword was displayed good
performance with a combination of toughness and strength as a well-recognised “double-
colour” or bi-metallic composite bronze sword.

Comparatively, the manufacturing technique involving surface modification to form
a Sn-rich layer in the sword surface provides more advantages: (1) The Sn-rich surface
treatment not only possesses much high hardness for cutting, but it also greatly increases the
corrosion resistance. (2) The manufacturing technique does not affect the sword appearance,
when compared with the two-times casting “double-colour” sword. (3) Finally, the silvery-
white or silvery-yellow surface also makes the sword more beautiful and dignified.

4. Simulation Calculations of Sn Element Diffusion in Bronze

As discussed in our previous work [7], a high-Sn region on a bronze surface could
arise from a method, i.e., a kind of deliberate tinning of bronze, such as simple dip or wipe
tinning. Therefore, for this sword, a possible process would include the steps of dip tinning
or Sn amalgamation on the sword surface at high temperature after casting, keeping it for a
while to form a Sn-rich layer, and finally grinding and finishing the sword.

According to the basic principle (theory) of materials science, the essence of this process
is the diffusion of Sn atoms into the Cu (or Cu-Sn alloy) substrate at a high temperature.
Experiments confirmed that when the temperatures were above 450 ◦C, Sn atoms obtain
enough energy to diffuse into the Cu substrate, and the diffusion length is determined
by temperature and time in which the (α + δ) eutectoid forms [8]. In other words, due
to the difference in concentration, Sn atoms diffuse into the bronze substrate at a high
temperature and form a layer of dense and high-hardness Cu-Sn phases in the surface,
namely, the “Sn-rich layer”.

Therefore, we explored the possibility and feasibility of the surface treatment with the
temperatures and times that are used for forming a Sn-rich layer in a range of 0.1–0.6 mm
on the bronze surface via theoretical calculations according to the basic law of diffusion,
namely, Fick’s law.

4.1. The Basic Law of Element Diffusion

(1) Fick’s first law: A quantitative formula for describing the migration of matter from
a region of high concentration to a region of low concentration:

J = −D
∂c
∂x

In the one-dimensional case, J is the diffusion flux. It is the number of atoms passing
through the unit plane perpendicular to the x-axis in a unit of time. ∂c/∂x is the concentration
gradient along the x-axis for the same time. D is the diffusion coefficient, which represents
the flux under a unit gradient. This equation is applicable to not only any position of
the diffusion system but also any time in the diffusion process. It is suitable for both
steady-state and unsteady-state diffusion systems.

(2) Fick’s second law: When the diffusion is in an unsteady state, i.e., ∂c
∂t 6= 0, the

change rate of the concentration with time at a certain point during diffusion is proportional
to the second derivative of the concentration distribution curve at that point. In the case of
one-dimensional diffusion, the diffusion process satisfies the following equation:

∂c
∂t

=
∂

∂x
(D

∂c
∂x

)

where its general solution is

C = a
∫ β

0
exp(−β2)dβ + b
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in which β = x/(2
√

Dt).
When diffusing within a semi-infinite object, the values of a and b can be determined

from the initial concentration and boundary concentration. Then, regarding the concentra-
tion distribution together with the diffusion distance after diffusion, the diffusion time (t)
can be calculated.

4.2. Calculation of Sn Diffusion in Bronze

In general, as a kind of surface engineering technology, the thermochemical process
produces a high-hardness surface layer in a steel substrate via non-metal (C, N, C + N, P,
Si, etc.) and metal (Cr, Al, V, Ti, etc.) diffusions at high temperature. In order to further
estimate the diffusion thickness, Fick’s laws are used for the theoretical calculation, and
for simplicity, a simple model was established, i.e., one kind of atom diffused into the
pure metal substrate in one direction. In fact, the grain boundaries and phase boundaries
in the diffusion layer can accelerate the diffusion rate, which is generally included in the
diffusion coefficient (D).

Regarding the “dip or wipe tinning” process, the bronze sword was dipped in a molten
Sn pool or coated with a Sn powder. Then, Sn atoms started to diffuse into the bronze
sword substrate during reheating for a period of time at high temperatures, and lastly, a
dense Sn-rich layer was obtained on the surface.

As discussed in Meeks’ work [8], the “dip or wipe tinning” process produced a
complicated phase mixture, such as α-Cu phase, η-Cu phase, ε-Cu phase and δ-Cu phase,
during the growth of the Sn-rich layer. Some of these phases belong to a kind of metastable
structure and would transform into stable phases during high-temperature treatment.
Therefore, for the thickness estimation of the Sn-rich layer, the above simple assumption
was also applied, which is commonly used in the thermochemical process; that is to say,
the influence of the intermetallic compounds on the Sn-rich layer formation was included
in the values of the Sn diffusion coefficient (D).

For the present work, the assumption of the calculation model was as follows: (1) Sn
atoms diffused in a pure Cu substrate at a certain temperature; (2) the Cu substrate was
one-dimensional and had a semi-infinite length; (3) the time (t) represented the length
of the period for forming a 0.1–0.6 mm diffusion layer (Sn-rich layer); and (4) only the
concentration gradient was considered for Sn atoms migration, i.e., downhill diffusion.

Therefore, Fick’s second law could be solved from the Boltzmann transform:

∂c
∂t

=
∂

∂x
(D

∂c
∂x

)

which has the general solution:

C = a
∫ β

0
exp(−β2)dβ + b

in which a and b are the constants to be determined, and β = x/(2
√

Dt).
Regarding the diffusion of a semi-infinite object, the surface element concentration

remained constant. The length of the object was greater than 4
√

Dt, which was similar to
that of the process, such as metal carburising or nitriding treatment; that is, Sn first reached
a limiting concentration at the surface when other elements diffused into the metal and
then remained constant. Meanwhile, Sn kept diffusing continuously in the metal substrate;
that is, the initial conditions: t = 0, x > 0 and c = 0; and the boundary conditions: t ≥ 0,
x = ∞, c = 0; x = 0, c = C0.

After substituting the boundary conditions and initial conditions into the general
solution, the relationship of the thickness, concentration and time was obtained:

C = C0(1− er f (β))
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in which

β = x/(2
√

Dt) er f (β) =
2√
π

∫ β

0
exp(−β2)dβ

This was the limiting concentration of the diffused elements at the surface of the
metal substrate.

Because the Sn-rich layer was composed of a large number of (α + δ) eutectoids and
few α-Cu phases, an approximate consideration of the Sn-limiting concentration on the
surface of Cu substrate was the value in the δ-Cu phase, i.e., C0 = 32.6 wt.%.

The experimental results revealed that the thickest Sn-rich layer on the blade was
about 0.6 mm, while the thickness of the ridge was in a range of 0.1–0.3 mm, and the
average Sn content in the sword body was 18.57 wt.%; that is to say, when the diffusion
distances (x’s) were 0.1 mm, 0.2 mm, 0.3 mm and 0.6 mm, the Sn concentration (C) was
18.57 wt.%. In other words, erf (β) was obtained and the β was 0.4 from the tabulation of
error function values [9] due to the known values of C0 and C in the equation. Consequently,
the diffusion time (t) behaved according to a function of the diffusion coefficient (D) and
diffusion distance (x) as follows:

t =
x2

4Dβ2

However, in the present case, this diffusion is very difficult because the radius of Sn
atoms (140 pm) is greater than that of Cu atoms (128 pm), and the diffusion of Sn in the Cu
substrate demonstrates the substitutional mechanism; that is to say, the diffusion needs a
high temperature and a long time. In addition, the diffusion coefficient (D) is different at
different temperatures, and the D values increase with the temperatures. Referring to the
book “Smithells Metal Reference Book” (7th edition) [10], the D values at several different
temperatures are listed in Table 2. For example, regarding the data temperature at 700 ◦C,
D = 4.3 × 10−9 cm2/s and x = 0.2 mm, the diffusion time (t) was calculated to be about 41 h
using the diffusion time formula.

Table 2. Calculation results of Sn diffusion in the Cu substrate.

Temperature
(◦C) D (cm2/s)

Time
(x = 0.1 mm)

Time
(x = 0.2 mm)

Time
(x = 0.3 mm)

Time
(x = 0.6 mm)

550 2.3 × 10−10 8 d 32 d 71 d 283 d

600 6.9 × 10−10 3 d 11 d 24 d 95 d

650 1.8 × 10−9 1 d 4 d 9 d 36 d

700 4.3 × 10−9 11 h 41 h 4 d 15 d

750 9.5 × 10−9 5 h 19 h 41 h 7 d

Similarly, Table 2 gives the calculation results of Sn diffusion in the Cu substrate. It
revealed the relationships between temperatures, times (t’s) and diffusion distances (x’s).
Figure 8 illustrates the corresponding fitting curves of the required diffusion times of the
Sn-rich layer with different thicknesses as a function of temperature. Obviously, with an
increase in temperature, the diffusion time (t) reduced rapidly for the same layer thickness,
i.e., the higher the temperature, the faster the diffusion rate.

Considering the possible formation in entombment during thousands of years, Figure 9
illustrates the curing that occurred in such conditions, such as 2000 years, room temperature,
D = 10 × 10−17 cm2/s [11] and the same boundary concentration of 32.6%. It showed that
the diffusion distance was less than 0.05 mm, which was very small and could be ignored.
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5. Discussion

Regarding Table 2, as an example, the time for forming a 0.2 mm thickness of the
Sn-rich layer at 600 ◦C required 11 days. Figure 10 illustrates a corresponding profile of the
Sn concentration variation with distance from the diffusion formula. They were basically
consistent when compared to the experimental profile from the EDS line-scan, as shown in
Figure 11. In other words, the presented theoretical calculation was reasonable.
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In addition, there was a “platform” with a constant Sn content in the Sn-rich layer
from the line-scan. The cause of such a phenomenon could have been as follows. The
surface was rapidly saturated with Sn when the diffusion began and reached the value
as in δ-Cu phase, i.e., forming δ-Cu phase on the surface. Furthermore, the δ-Cu phase
kept growing and formed an initial Sn-rich layer with a full δ-Cu phase adjacent to the
surface as the Sn diffusion continued, which resulted in the maximum Sn content, i.e., the
“platform”. Afterwards, the Sn concentration gradually decreased.

Another phenomenon was that there was obviously a downward step between the
Sn-rich layer and the Cu substrate at the interface in the Sn line-scan for all areas. According
to the phase diagram of a Cu-Sn binary alloy, the diffusion process not only led to the
formation of an α-Cu solid solution and compositional changes but also resulted in other
phase transformations, such as δ-Cu and β-Cu. Therefore, this content drop at the interface
because of the formation of different phases due to high Sn content in the Sn-rich layer.

To summaries, from the above theoretical calculation, it was demonstrated that to have
a Sn-rich layer in a range of 0.1 mm–0.6 mm, the time for the surface treatment should be
as short as few hours or as long as a few days at different temperatures. The thickest layer
(0.6 mm) in the blade (the edge) might have been due to the “tip or edge effect” during
dipping at a high temperature. Let us imagine during the Bronze Age that it was possible
and worthwhile for an ancient technician to spend time manufacturing a high-quality
bronze sword due to the slow rhythm of life. In fact, we also found a few of this kind of
bronze sword in our previous work [12]. Sun et. al. [13] reported and analysed 47 tinning
bronze weapons, which were unearthed from broad areas, such as Guyuan in Ningxia
province, Chengdu and Mianzhu in Sichuan province and Yunnan province in China, dated
to the fifth-second century B.C., i.e., from the Spring and Autumn and the Warring States



Materials 2022, 15, 2491 12 of 13

Periods to the early Western Han dynasty. However, the tinning layers were thin, only
within a range of 20–40 µm mostly, which might have been for the purpose of decoration
and corrosion resistance.

The ancient Chinese technicians might have added catalysts or active agents, or
energising reagents for accelerating the Sn diffusion process when dip or wipe tinning, as
we do today in the industry; that is to say, the actual making time was much shorter than
this calculated data. From Table 1, it was interesting to note that in addition to the main
alloys Cu and Sn, there were more or fewer impurity elements, including Fe, Si and P, in
the Sn-rich layer. Regarding their contents, these impurities did not seem to come from the
surrounding environment, such as soil or water, and might be the residues from the surface
treatment. Were they from a special catalyst added in the molten Sn during “dip or wipe
tinning”? Possibly. As we know, adding a catalyst is also a common method in modern
surface treatment. In addition, some studies proposed that elemental Fe in the Sn-rich layer
was induced by using iron tools during the operation of “dip or wipe tinning”, which was
very common in the Spring and Autumn and the Warring States Periods [14,15].

It has been recognised that the high-Sn region or layer on the ancient bronze surface
due to the following ways [8]: (1) tinning the surface by using processes including simple
dip or wipe and mercury amalgam, (2) “tin sweat” produced during solidification and
(3) selective corrosion. For the present bronze sword, the dense and compacted fracture
surface, as shown in Figure 6c,d, and very high microhardness, as shown in Figure 7,
confirmed that the layer was not a loose corrosive substance. Therefore, we proposed that
this Sn-rich layer was manufactured via a process of simple dip or a wipe tinning, and its
relatively large thickness made it a novel kind of ancient composite bronze sword, which
technically possessed more advantages than the common two-times casted bi-metallic
composite bronze sword.

6. Conclusions

As a widely used surface treatment “dip or wipe tinning” in the Bronze Age, this
work demonstrated experimentally and theoretically that it could also be applied to make
composite bronze swords besides the general purposes of decoration and anti-corrosion.
Compared with the “double-colour” or bi-metallic composite bronze sword made by using
two-times coating, this kind of composite sword was of higher technicality and provided
more technical support and flexibility. It not only had a comprehensive performance
regarding toughness and strength without changing the sword’s appearance but also made
the sword more beautiful and dignified. Such a composite sword overturns our perception
of the ancient bronze manufacturing technique. In addition, it also inspires us to study the
ancient bronzes with professional knowledge of material science in the future.
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